555 research outputs found

    Hypernetwork functional image representation

    Full text link
    Motivated by the human way of memorizing images we introduce their functional representation, where an image is represented by a neural network. For this purpose, we construct a hypernetwork which takes an image and returns weights to the target network, which maps point from the plane (representing positions of the pixel) into its corresponding color in the image. Since the obtained representation is continuous, one can easily inspect the image at various resolutions and perform on it arbitrary continuous operations. Moreover, by inspecting interpolations we show that such representation has some properties characteristic to generative models. To evaluate the proposed mechanism experimentally, we apply it to image super-resolution problem. Despite using a single model for various scaling factors, we obtained results comparable to existing super-resolution methods

    Detection of visual defects in citrus fruits: multivariate image analysis vs graph image segmentation

    Full text link
    ¿The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-40261-6_28This paper presents an application of visual quality control in orange post-harvesting comparing two different approaches. These approaches correspond to two very different methodologies released in the area of Computer Vision. The first approach is based on Multivariate Image Analysis (MIA) and was originally developed for the detection of defects in random color textures. It uses Principal Component Analysis and the T2 statistic to map the defective areas. The second approach is based on Graph Image Segmentation (GIS). It is an efficient segmentation algorithm that uses a graph-based representation of the image and a predicate to measure the evidence of boundaries between adjacent regions. While the MIA approach performs novelty detection on defects using a trained model of sound color textures, the GIS approach is strictly an unsupervised method with no training required on sound or defective areas. Both methods are compared through experimental work performed on a ground truth of 120 samples of citrus coming from four different cultivars. Although the GIS approach is faster and achieves better results in defect detection, the MIA method provides less false detections and does not need to use the hypothesis that the bigger area in samples always correspond to the non-damaged areaLópez García, F.; Andreu García, G.; Valiente González, JM.; Atienza Vanacloig, VL. (2013). Detection of visual defects in citrus fruits: multivariate image analysis vs graph image segmentation. En Computer Analysis of Images and Patterns. Springer Verlag (Germany). 8047:237-244. doi:10.1007/978-3-642-40261-6S237244804

    Independent components in spectroscopic analysis of complex mixtures

    Full text link
    We applied two methods of "blind" spectral decomposition (MILCA and SNICA) to quantitative and qualitative analysis of UV absorption spectra of several non-trivial mixture types. Both methods use the concept of statistical independence and aim at the reconstruction of minimally dependent components from a linear mixture. We examined mixtures of major ecotoxicants (aromatic and polyaromatic hydrocarbons), amino acids and complex mixtures of vitamins in a veterinary drug. Both MICLA and SNICA were able to recover concentrations and individual spectra with minimal errors comparable with instrumental noise. In most cases their performance was similar to or better than that of other chemometric methods such as MCR-ALS, SIMPLISMA, RADICAL, JADE and FastICA. These results suggest that the ICA methods used in this study are suitable for real life applications. Data used in this paper along with simple matlab codes to reproduce paper figures can be found at http://www.klab.caltech.edu/~kraskov/MILCA/spectraComment: 22 pages, 4 tables, 6 figure

    Partial least square regression applied to the QTLMAS 2010 dataset

    Get PDF
    Detection of genomic regions affecting traits is a goal in many genetic studies. Studies applying distinct methods for detection of these regions, called quantitative trait loci (QTL), have been described, ranging from single marker regression [1] to methods that enable to fit several markers simultaneously [2,3]. Simultaneously fitting all markers leads to more accurate detection of QTL compared to independent fitting of single markers in a regression model when there is linkage disequilibrium (LD) between the genomic regions that affect the trait but comes at the cost of increased computational requirements [2]. Partial least square regression (PLSR) is one method for simultaneously fitting multiple markers and was applied by Bjornstad et al. for detection of QTL [3]. An interesting characteristic of PLSR its straightforward application of to simultaneous analysis of data of multiple traits [3]. The objectives of this study were to use PLSR to search for QTL and to estimate breeding values in the dataset of the QTLMAS 2010 worksho

    Quantitative analysis of powder mixtures by raman spectrometry : the influence of particle size and its correction

    Get PDF
    Particle size distribution and compactness have significant confounding effects on Raman signals of powder mixtures, which cannot be effectively modeled or corrected by traditional multivariate linear calibration methods such as partial least-squares (PLS), and therefore greatly deteriorate the predictive abilities of Raman calibration models for powder mixtures. The ability to obtain directly quantitative information from Raman signals of powder mixtures with varying particle size distribution and compactness is, therefore, of considerable interest In this study, an advanced quantitative Raman calibration model was developed to explicitly account for the confounding effects of particle size distribution and compactness on Raman signals of powder mixtures. Under the theoretical guidance of the proposed Raman calibration model, an advanced dual calibration strategy was adopted to separate the Raman contributions caused by the changes in mass fractions of the constituents in powder mixtures from those induced by the variations in the physical properties of samples, and hence achieve accurate quantitative determination for powder mixture samples. The proposed Raman calibration model was applied to the quantitative analysis of backscatter Raman measurements of a proof-of-concept model system of powder mixtures consisting of barium nitrate and potassium chromate. The average relative prediction error of prediction obtained by the proposed Raman calibration model was less than one-third of the corresponding value of the best performing PLS model for mass fractions of barium nitrate in powder mixtures with variations in particle size distribution, as well as compactness

    Fast Label Embeddings via Randomized Linear Algebra

    Full text link
    Many modern multiclass and multilabel problems are characterized by increasingly large output spaces. For these problems, label embeddings have been shown to be a useful primitive that can improve computational and statistical efficiency. In this work we utilize a correspondence between rank constrained estimation and low dimensional label embeddings that uncovers a fast label embedding algorithm which works in both the multiclass and multilabel settings. The result is a randomized algorithm whose running time is exponentially faster than naive algorithms. We demonstrate our techniques on two large-scale public datasets, from the Large Scale Hierarchical Text Challenge and the Open Directory Project, where we obtain state of the art results.Comment: To appear in the proceedings of the ECML/PKDD 2015 conference. Reference implementation available at https://github.com/pmineiro/randembe

    Modelling human musculoskeletal functional movements using ultrasound imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A widespread and fundamental assumption in the health sciences is that muscle functions are related to a wide variety of conditions, for example pain, ischemic and neurological disorder, exercise and injury. It is therefore highly desirable to study musculoskeletal contributions in clinical applications such as the treatment of muscle injuries, post-surgery evaluations, monitoring of progressive degeneration in neuromuscular disorders, and so on.</p> <p>The spatial image resolution in ultrasound systems has improved tremendously in the last few years and nowadays provides detailed information about tissue characteristics. It is now possible to study skeletal muscles in real-time during activity.</p> <p>Methods</p> <p>The ultrasound images are transformed to be congruent and are effectively compressed and stacked in order to be analysed with multivariate techniques. The method is applied to a relevant clinical orthopaedic research field, namely to describe the dynamics in the Achilles tendon and the calf during real-time movements.</p> <p>Results</p> <p>This study introduces a novel method to medical applications that can be used to examine ultrasound image sequences and to detect, visualise and quantify skeletal muscle dynamics and functions.</p> <p>Conclusions</p> <p>This new objective method is a powerful tool to use when visualising tissue activity and dynamics of musculoskeletal ultrasound registrations.</p

    A Hybrid Least Squares and Principal Component Analysis Algorithm for Raman Spectroscopy

    Get PDF
    Raman spectroscopy is a powerful technique for detecting and quantifying analytes in chemical mixtures. A critical part of Raman spectroscopy is the use of a computer algorithm to analyze the measured Raman spectra. The most commonly used algorithm is the classical least squares method, which is popular due to its speed and ease of implementation. However, it is sensitive to inaccuracies or variations in the reference spectra of the analytes (compounds of interest) and the background. Many algorithms, primarily multivariate calibration methods, have been proposed that increase robustness to such variations. In this study, we propose a novel method that improves robustness even further by explicitly modeling variations in both the background and analyte signals. More specifically, it extends the classical least squares model by allowing the declared reference spectra to vary in accordance with the principal components obtained from training sets of spectra measured in prior characterization experiments. The amount of variation allowed is constrained by the eigenvalues of this principal component analysis. We compare the novel algorithm to the least squares method with a low-order polynomial residual model, as well as a state-of-the-art hybrid linear analysis method. The latter is a multivariate calibration method designed specifically to improve robustness to background variability in cases where training spectra of the background, as well as the mean spectrum of the analyte, are available. We demonstrate the novel algorithm’s superior performance by comparing quantitative error metrics generated by each method. The experiments consider both simulated data and experimental data acquired from in vitro solutions of Raman-enhanced gold-silica nanoparticles

    A Cross-Lingual Similarity Measure for Detecting Biomedical Term Translations

    Get PDF
    Bilingual dictionaries for technical terms such as biomedical terms are an important resource for machine translation systems as well as for humans who would like to understand a concept described in a foreign language. Often a biomedical term is first proposed in English and later it is manually translated to other languages. Despite the fact that there are large monolingual lexicons of biomedical terms, only a fraction of those term lexicons are translated to other languages. Manually compiling large-scale bilingual dictionaries for technical domains is a challenging task because it is difficult to find a sufficiently large number of bilingual experts. We propose a cross-lingual similarity measure for detecting most similar translation candidates for a biomedical term specified in one language (source) from another language (target). Specifically, a biomedical term in a language is represented using two types of features: (a) intrinsic features that consist of character n-grams extracted from the term under consideration, and (b) extrinsic features that consist of unigrams and bigrams extracted from the contextual windows surrounding the term under consideration. We propose a cross-lingual similarity measure using each of those feature types. First, to reduce the dimensionality of the feature space in each language, we propose prototype vector projection (PVP)—a non-negative lower-dimensional vector projection method. Second, we propose a method to learn a mapping between the feature spaces in the source and target language using partial least squares regression (PLSR). The proposed method requires only a small number of training instances to learn a cross-lingual similarity measure. The proposed PVP method outperforms popular dimensionality reduction methods such as the singular value decomposition (SVD) and non-negative matrix factorization (NMF) in a nearest neighbor prediction task. Moreover, our experimental results covering several language pairs such as English–French, English–Spanish, English–Greek, and English–Japanese show that the proposed method outperforms several other feature projection methods in biomedical term translation prediction tasks
    • …
    corecore